DC-DC Boost Converter works to produce an output voltage greater than the input voltage. can be used to supply voltage in various systems. To supply voltage to a system, the boost converter works by applying a switch driven by a PWM generator. This paper presents the design of a control system to adjust the amount of duty cycle on a PWM generator. The use of the LQR control system and integral state feedback to control the duty cycle of the DC-DC Boost Converter is proven to be able to stabilize the output voltage. By providing a frequency of 500 Hz with an input voltage of 1.5 Volts and a reference voltage of 7 Volts, the best performance can be achieved, namely settling time at 5.28 seconds and rise time at 2.6 seconds. The expected performance can be achieved by adjusting the system\'s power supply requirements, such as determining the reference voltage and frequency of PWM generator.
Introduction
Conclusion
DC-DC Boost Converter can work well by controlling the PWM generator duty cycle. The LQR method and integral state feedback are able to stabilize the output voltage of the boost converter and produce a relatively small error. Using the controller, the duty cycle can be set precisely. After the duty cycle controller is used, the next determinant is the frequency used in the PWM generator. By providing a frequency of 500 Hz with an input voltage of 1.5 Volts and a reference voltage of 7 Volts, the best performance can be achieved, namely settling time at 5.28 seconds and rise time at 2.6 seconds.
References
[1] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-Up DC-DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143–9178, 2017, doi: 10.1109/TPEL.2017.2652318.
[2] N. F. Nik Ismail, I. Musirin, R. Baharom, and D. Johari, “Fuzzy logic controller on DC/DC boost converter,” PECon2010 - 2010 IEEE Int. Conf. Power Energy, pp. 661–666, 2010, doi: 10.1109/PECON.2010.5697663.
[3] D. J. Cunha, F. B., Pagano, “LIMITATIONS IN THE CONTROL OF A DC-DC BOOST CONVERTER,” 2002.
[4] A. W. N. Husna, “Effect of Load Variations in DC-DC Converter Effect of Load Variations in DC-DC Converter,” no. November, 2011, doi: 10.1109/CIMSim.2011.78.
[5] K. Abbaszadeh, “A New Two-input And Multi-output Interleaved DC _ DC Boost Converter For Satellites Power system,” pp. 12–14, 2019.
[6] D. Naveda-castillo and L. Adanaque-infante, “Characterization of DC Converters for Energy Power Systems on Cubesats,” pp. 2020–2023, 2020.
[7] A. Raj and R. P. Praveen, “Highly efficient DC-DC boost converter implemented with improved MPPT algorithm for utility level photovoltaic applications,” Ain Shams Eng. J., vol. 13, no. 3, 2022, doi: 10.1016/j.asej.2021.10.012.
[8] L. Ardhenta and M. Rusli, “Sliding Mode Control of Output Voltage in DC-DC Boost Converter Using PI Sliding Surface,” Proc. - IEIT 2021 1st Int. Conf. Electr. Inf. Technol., pp. 228–232, 2021, doi: 10.1109/IEIT53149.2021.9587410.
[9] T. Jarin et al., “Journal Pre-proofs,” 2022.
[10] K. K. Patri and S. Samanta, “State feedback with integral control for boost converter & its microcontroller implementation,” 2018 IEEMA Eng. Infin. Conf. eTechNxT 2018, pp. 1–5, 2018, doi: 10.1109/ETECHNXT.2018.8385374.
[11] M. M. Myada Shadoul, Rashid Al Abri, Hassan Yousef, “DC-DC Boost Converter Controller Design for PV Application,” pp. 5–10, 2017.
[12] R. P. Eldho and S. Z. N. Dar, “Simulation of PID and Fuzzy Logic Controllers for Boost Converter,” Proc. 6th Int. Conf. Commun. Electron. Syst. ICCES 2021, pp. 289–294, 2021, doi: 10.1109/ICCES51350.2021.9488949.
[13] J. A. Ganeswari and R. Kiranmayi, “Performance improvement for DC boost converter with fuzzy controller,” Proc. 2nd Int. Conf. Inven. Syst. Control. ICISC 2018, no. Icisc, pp. 358–362, 2018, doi: 10.1109/ICISC.2018.8399094.
[14] A. Memon, A. N. Kalhoro, A. M. Memon, and S. A. Shah, “Harmonics Mitigation from DC-DC Boost Converter Through Adaptive Neuro-Fuzzy Inference System Controller,” IMTIC 2021 - 6th Int. Multi-Topic ICT Conf. AI Meets IoT Towar. Next Gener. Digit. Transform., pp. 1–4, 2021, doi: 10.1109/IMTIC53841.2021.9719852.
[15] C. S. Sachin and S. G. Nayak, “Design and simulation for sliding mode control in DC-DC boost converter,” Proc. 2nd Int. Conf. Commun. Electron. Syst. ICCES 2017, vol. 2018-Janua, no. Icces, pp. 440–445, 2018, doi: 10.1109/CESYS.2017.8321317.
[16] S. Member and A. Sˆ, “Design of a LQR-Based Boost Converter Controller for Energy Savings,” vol. 67, no. 7, pp. 5379–5388, 2020.
[17] G. Nugroho, A. Dharmawan, and A. E. D. F. M. Dynamics, “Undesirable Rolling Minimization On The EDF Missiles Flight Based On LQR Methods,” pp. 85–90, 2017.
[18] A. Dharmawan, C. Habiba, and M. Auzan, “Walking Stability Control System on Humanoid When Turning Based on LQR Method,” vol. 8, no. 11, 2019.
[19] F. E. U. Reis, R. P. Torrico-Bascope, and M. V. S. Costa, “LQR control with integral action applied to a high gain step-up DC-DC converter,” in XI Brazilian Power Electronics Conference, Sep. 2011, no. September, pp. 256–261, doi: 10.1109/COBEP.2011.6085262.
[20] K. Nath and L. Dewan, “Optimization of LQR weighting matrices for a rotary inverted pendulum using intelligent optimization techniques,” in 2017 Conference on Information and Communication Technology (CICT), Nov. 2017, vol. 2018-April, pp. 1–6, doi: 10.1109/INFOCOMTECH.2017.8340599.
[21] A. Ali, M. R. Mughal, H. Ali, and L. Reyneri, “Innovative power management, attitude determination and control tile for CubeSat standard NanoSatellites,” Acta Astronaut., vol. 96, no. 1, pp. 116–127, 2014, doi: 10.1016/j.actaastro.2013.11.013.